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Abstract
Multi-scale information is crucial for multivari-
ate time series modeling. However, most ex-
isting time series multi-scale analysis methods
treat all variables in the same manner, making
them unsuitable for Irregular Multivariate Time
Series (IMTS), where variables have distinct ori-
gin scales/sampling rates. To fill this gap, we
propose Hi-Patch, a hierarchical patch graph net-
work. Hi-Patch encodes each observation as a
node, represents and captures local temporal and
inter-variable dependencies of densely sampled
variables through an intra-patch graph layer, and
obtains patch-level nodes through aggregation.
These nodes are then updated and re-aggregated
through a stack of inter-patch graph layers, where
several scale-specific graph networks progres-
sively extract more global temporal and inter-
variable features of both sparsely and densely sam-
pled variables under specific scales. The output
of the last layer is fed into task-specific decoders
to adapt to different downstream tasks. Exper-
iments on 8 datasets demonstrate that Hi-Patch
outperforms state-of-the-art models in IMTS fore-
casting and classification tasks. Code is available
at: https://github.com/qianlima-lab/Hi-Patch.

1. Introduction
Time series analysis has important applications in various
fields such as healthcare (Lan et al., 2024), climate fore-
casting (Verma et al., 2024) and traffic planning (Li et al.,
2024b). Due to the complexity and non-stationarity of real-
world systems, multivariate time series often exhibit dif-
ferent variations and fluctuations at different scales (Chen
et al., 2024a). Previous studies (Cai et al., 2024; Wang
et al., 2024a) have demonstrated that effectively capturing
multi-scale features is essential for time series modeling.
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Due to sensor malfunctions, varying sampling sources, or
human factors, the final sampled time series often exhibits
irregularities in real-world applications, resulting in an Ir-
regular Multivariate Time Series (IMTS). The peculiarity
of IMTS lies in two aspects: firstly, the sampling interval
within each variable is uneven. Secondly, different variables
are asynchronously sampled and have distinct sampling
rates. The subgraph in the top left corner of Figure 1 illus-
trates an IMTS example with two variables.

As a unique type of multivariate time series, IMTS also ex-
hibits the inherent multi-scale characteristics of time series.
Unfortunately, most existing multi-scale analysis methods
assume that the input series are regularly sampled and have
limitations in handling IMTS. The mainstream approach
of these methods is to downsample or segment the origi-
nal series based on several fixed time steps (Challu et al.,
2023; Shabani et al., 2023), thereby forming several views
that reflect features at different scale levels, as shown in
the bottom row of Figure 1. On this basis, global temporal
and inter-variable dependencies are extracted from coarse-
grained views, while local dependencies are extracted from
fine-grained views. This approach assumes that all variables
have a consistent original scale so that each downsampled
view consistently reflects the features of all variables at the
same granularity level, thereby achieving consistent separa-
tion of multi-scale patterns for all variables.

However, in IMTS, some variables have only a few obser-
vations and do not possess fine-grained features, making
their downsampled view meaningless (e.g., the variable V0

in Figure 1). Some other variables are densely sampled and
require multiple downsampling steps to reflect global pat-
terns (e.g., the variable V1 in Figure 1). In such cases, it is
difficult to determine a consistently suitable downsampling
level for all variables, making existing methods infeasible
from the beginning. Furthermore, in IMTS, a downsampled
view can contain mixed granularity features, as shown in
the top row of Figure 1, but existing methods tend to extract
and analyze single-level features at a specific scale, which
are difficult to handle mixed features. Additionally, despite
the distinct scales/sampling rates occurring among variables
in IMTS, they are not entirely independent but exhibit cor-
relations (Luo et al., 2024). Specifically, variables in MTS
may display different inter-variable correlations at different
time scales (Cai et al., 2024). How to extract multi-scale
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Figure 1. Comparison of downsampling results of two variables for an irregular (top row) and a regular (bottom row) multivariate time
series with step sizes of 1 (left column), 2 (middle column) and 4 (right column). Irregular time series contain mixed feature levels at a
specific downsampling scale, while regular time series exhibit a single feature level at a specific downsampling scale.

temporal dependencies while considering inter-variable cor-
relations under different scales in IMTS, where variables
have distinct original scales and asynchronous observations,
remains a major challenge in IMTS modeling.

To fill this gap, we propose Hi-Patch, a hierarchical patch
graph network. Hi-Patch is based on the concept of patching,
which has been recently proven to be effective in capturing
local temporal dependencies (Nie et al., 2023; Chen et al.,
2024a; Zhang et al., 2024). Hi-Patch first divides the orig-
inal observation set into multiple patches based on a short
time span and encodes each observation as a node. Then, an
intra-patch graph layer flexibly represents and fully captures
local temporal and inter-variable dependencies of densely
sampled variables at the original scale by employing a fully
connected graph network within each patch. Subsequently,
to capture dependencies at a larger scale, the observation
nodes are aggregated to obtain patch-level feature nodes as
inputs for several inter-patch graph layers. Each inter-patch
graph layer receives specific patch-level nodes, which are
obtained through node aggregation of the previous layer,
thereby forming a hierarchical architecture. These inter-
patch graph layers gradually extract more global tempo-
ral and inter-variable dependencies that both densely and
sparsely sampled variables possess through scale-specific
graph networks. The output of the last layer is finally fed
into specific task decoders to adapt to different downstream
tasks. During this process, each intra/inter-patch graph layer
handles single-level features at a specific scale. Fine-grained
features of densely sampled variables are extracted in the
lower layers, while coarse-grained features of all variables
are extracted in the upper layers, achieving complete ex-
traction of mixed multiple granularities temporal and inter-
variable correlations in IMTS. Our main contributions are
summarized as follows:

• We introduce the intra-patch/inter-patch graph layers

to flexibly represent and fully extract dependencies of
specific variables in IMTS at specific scales.

• We propose Hi-Patch, using a hierarchical architecture
to effectively achieve multi-scale modeling of IMTS
from fine-grained to coarse-grained.

• We conduct experiments on IMTS forecasting and
classification on 8 datasets, and the evaluation results
demonstrate that Hi-Patch outperforms existing meth-
ods in most cases.

2. Related Work
Irregular Multivariate Time Series Modeling Existing
methods can be generally divided into interpolation-based
and raw-data-based methods. The former, employing meth-
ods such as kernel-based approaches (Shukla & Marlin,
2019; Wu et al., 2021b), hourly aggregation (Ma et al.,
2020) or gaussian process (Tan et al., 2021), aims to regu-
larize sampling intervals. However, interpolation may dis-
rupt the sampling patterns of the original series. Raw-data-
based methods learn directly from IMTS. (Che et al., 2018)
enhances RNNs for uneven time intervals, while (Horn
et al., 2020; Shukla & Marlin, 2021) introduce time em-
beddings for arbitrary timestamps. (Rubanova et al., 2019;
De Brouwer et al., 2019; Biloš et al., 2021; Schirmer et al.,
2022; Chen et al., 2024b) use neural ODEs to address irreg-
ularities. Recent research also integrates attention mecha-
nisms (Jhin et al., 2021) or graph neural networks (Zhang
et al., 2022; Yalavarthi et al., 2024; Zhang et al., 2024; Luo
et al., 2024) to capture inter-variable correlations in IMTS.
Despite these advancements, most of these methods focus
only on single-scale characteristics of IMTS, and how to
comprehensively capture multi-scale features within IMTS
remains a challenge.
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Multi-scale Modeling for Time Series Multi-scale infor-
mation is essential for time series modeling. (Chen et al.,
2021) leverages different frequencies to update sub-hidden
states, while (Liu et al., 2022) employs pyramid attention
for multi-scale feature extraction. (Challu et al., 2023) uses
multi-rate sampling and hierarchical interpolation, and (Sha-
bani et al., 2023) assigns forecasting models across tem-
poral scales. (Chen et al., 2024a) introduces a multi-scale
Transformer with adaptive paths, and (Wang et al., 2024a)
disentangles variations across scales for complementary pre-
dictions. However, these methods are designed for regular
MTS and are not well adaptive for IMTS. Although Warp-
former (Zhang et al., 2023) presents a multi-scale approach
for IMTS, its original goal is to balance the differences in
sampling densities across variables and it involves upsam-
pling interpolation for sparse variables, which may distort
the original data distribution.

Graph Neural Networks for Multivariate Time Series
Recent studies have integrated GNNs with time series mod-
eling frameworks to effectively capture inter-variable depen-
dencies in MTS (Jin et al., 2024), achieving success in do-
mains such as transportation (Rahmani et al., 2023), health-
care (Wang et al., 2022), and economics (Wang et al., 2021).
However, many of these methods are primarily designed
for modeling synchronous correlations among variables,
lacking sufficient extraction of asynchronous dependencies
widely present in IMTS.

3. Problem Definition
Definition 1 (Irregular Multivariate Time Series) We con-
sider a datasetD consisting of n IMTS sample. Each sample
of D is a tuple, i.e., D := {(S1, y1), . . . , (Sn, yn)}, where
Si denotes the i-th time series sample and yi ∈ {1, . . . , C}
is the class label (C is the number of categories). We de-
scribe i-th sample Si as a set of M = |Si| observations such
that Si := {o1, . . . , oM}. Each observation oj is a tuple
(tj , zj , vj), consisting of a timestamp tj ∈ R+, an observed
value zj ∈ R and a variable indicator vj ∈ {1, . . . , V },
where V represents the total number of variables. An IMTS
sample can thus be represented as:

Si := {(tj , zj , vj)|j = 1, ...,M}, (1)

Problem 1 (Irregular Multivariate Time Series Classi-
fication). Given an IMTS sample Si, the problem is to
correctly predict its class label yi:

C(Si)→ yi, (2)

where C(·) denotes the classification model we aim to learn.

Problem 2 (Irregular Multivariate Time Series Forecast-
ing). Given a split timestamp tS , each sample Si is seg-
mented into a historical window Xi := {(tj , zj , vj)|j =

1, ...,M, tj ≤ tS} and a forecasting window Yi :=
{[(tj , vj), zj ]|j = 1, ...,M, tj > tS}. Elements tj and vj
of j-th observation tuple in the set of forecasting windows
are combined into a forecasting query qj ∈ Qi. The prob-
lem is to accurately predict the corresponding observation
values Zi correspondence to forecasting query Qi based on
the historical window Xi:

F(Xi,Qi)→ Zi, (3)

where F(·) denotes the forecasting model we aim to learn.

4. Methodology
In this section, we will take the i-th sample Si with Mh

historical observations as an example for introducing our
method. We introduce the observation encoder in Section
4.1, followed by the introduction of the single intra-patch
graph layer and inter-patch graph layer in Sections 4.2 and
4.3, respectively. Section 4.4 describes how the hierarchical
architecture is implemented, and Section 4.5 covers the task
decoder. Figure 2 presents the overall architecture of our
model.

4.1. Observation Encoder

First, we introduce how to encode each observation into an
dmodel-dimensional graph node embedding. The j-th histori-
cal observation oj of Si corresponds to the tuple (tj , vj , zj),
representing the observation value zj of variable vj at times-
tamp tj . We encode these three parts separately.

For time encoding, we adopt continuous time embedding
(Shukla & Marlin, 2021), which is designed specifically
for IMTS. The d-th dimension of dmodel-dimensional time
embedding ϕ(tj) for tj is calculated by:

ϕ(tj)[d] =

{
ω0 · t+ α0, if d = 0

sin(ωd · t+ αd), if 0 < d < dmodel
, (4)

where ω0, α0, ωd and αd are learnable parameters. For vari-
able encoding, we randomly initialize a learnable variable
embedding for each variable, forming a variable embedding
matrix E ∈ RV×dmodel , the embedding corresponding to
variable vj is Evj . For value encoding, a linear layer f(·) is
used to map the observation value zj into dmodel-dimensional
embedding.

With these three embeddings, the graph node embedding for
j-th observation oj is calculated as:

hj = σ[ϕ(tj) +Evj + f(zj)] ∈ Rdmodel , (5)

where σ(·) is ReLU activation function.

4.2. Intra-Patch Graph Layer

In this section, we will introduce how to extract fine-grained
features of densely sampled variables through an intra-patch

3



Hi-Patch: Hierarchical Patch GNN for Irregular Multivariate Time Series

Output

Prediction

0 1or

Classification Intra -Patch Graph Layer

Observation Encoder

Origin Time Series

Inter -Patch Graph Layer 2

Task Decoder

Update

Node Embeddings

Patch 1 Patch 2 Patch 3 Patch 4

Scale 2

Scale 1

Scale 3

Classifier

MLP (ℋ𝑖
(3) || 𝜙(𝑡))

0 10 20 30 40
time

Node of V0

Node of V1

Node of V2

Aggregation

history future

× 𝑙𝑜𝑔2 𝑁𝑝𝑎𝑡𝑐ℎ

𝑁𝑝𝑎𝑡𝑐ℎ = 4

ℋ(1)

ℋ(2)

ℋ0
(3)

ℋ1
(3)

ℋ2
(3)

ℋ0
(3)

ℋ1
(3)

ℋ2
(3)

Update

Aggregation

Inter -Patch Graph Layer 1

Update

Aggregation

Figure 2. The model framework of Hi-Patch. The example input is an IMTS with three variables and a historical window of 0-40s which
is divided into N = 4 patches with a patch size P = 10s. First, each observation is encoded into a graph node through an observation
encoder. Then, fine-grained features of densely sampled variables within each patch are extracted via an intra-patch graph layer and
nodes are aggregated into patch-level nodes as inputs for multiple stacked inter-patch graph layers. After passing through ⌈log2 N⌉ = 2
inter-patch graph layers, coarse-grained features of all variables are progressively extracted and a single node embedding for each variable
is obtained. Finally, the task decoder computes the downstream task output based on these node embeddings.

graph layer. First, we divide the historical observation nodes
into several non-overlapping patches based on a short time
span P . Given a total historical time span of T , it can be
divided into N =

⌈
T
P

⌉
patches. The n-th patch includes

observation nodes of all variables within the period from
(n − 1) · P to n · P , the index set of observation nodes in
n-th patch is:

In = {j | j = 1, 2, ...,Mh, (n− 1) · P < tj ≤ n · P}.
(6)

The corresponding set of node states is Hn = {hj | j ∈
In}, initialized by node embeddings. Each patch, divided
based on a short time span, primarily consists of observation
nodes from densely sampled variables, with a few or no
observation nodes from sparsely sampled variables, thus
forming a fine-grained view of densely sampled variables.

4.2.1. UPDATE

After obtaining several patches as fine-grained views of the
densely sampled variables, each pair of nodes within a patch
is connected by an edge to form a fully connected graph
(intra-patch graph) for flexible representation of three types
of local dependencies in IMTS in a unified manner, namely:
1) the same variable at different times, 2) different variables
at the same time (synchronous) and 3) different variables
at different times (asynchronous). The set of edges in n-th
patch is:

En = {(u, v) | u ∈ In, v ∈ In}. (7)

We use graph attention network (GAT) (Veličković et al.,
2018) to update the node states within each intra-patch graph
for sufficiently extracting these dependencies. The formula
for updating the state of node v is:

hv = hv +
∑

u∈N (v)

MHA(hv, hu, hu), (8)

where N (v) denotes the set of neighboring nodes of node
v and MHA denotes the multi-head attention mechanism
(Vaswani et al., 2017):

MHA(hv, hu, hu) = Softmax(
(Wkhu)

T
(Wqhv)√

dmodel
) ·Wvhu,

(9)

Due to the existence of three different types of dependen-
cies, we adopted three sets of {Wq , Wk, Wv} parameters to
handle them separately. Compared to conventional methods
that separately extract features along the time and variable
dimensions, our intra-patch graph more comprehensively ac-
counts for the asynchronous characteristics of IMTS. After
the L-layer state update with Eq.(8), the local dependencies
of the densely sampled variables at the original scale are
thoroughly extracted.

4.2.2. AGGREGATION

To further extract features at a larger scale, we aggregate
nodes of the same variables within each patch to create the
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overall feature nodes of variables during the period of each
patch. Specifically, for the nodes of the v-th variable in
the n-th patch, the index set of nodes is In,v = {j | j ∈
In, vj = v} . We first calculate the average observation
timestamp as a reference time t̄

(0)
n,v = 1

|In,v|
∑

j∈In,v
tj ,

and then use multi-time attention (Shukla & Marlin, 2021)
to aggregate the nodes to t̄

(0)
n,v:

h(0)
n,v =

∑
j∈In,v

MHA(ϕ(tj), ϕ(t̄
(0)
n,v), hj). (10)

When a variable has no observation within a patch, no ag-
gregation node is created, thus preserving the irregularities
of the original series. We use a mask indicator m

(0)
n,v to

indicate whether the aggregation node exists of the v-th
variable at the n-th patch. If |In,v| = 0, m(0)

n,v is set as 0,
else m(0)

n,v = 1. The new set of node states for all N patches
of all V variables after aggregation isH(0) = {h(0)

n,v | n =

1, 2, ..., N, v = 1, 2, ..., V,m
(0)
n,v = 1}.

4.3. Inter-Patch Graph Layer

After passing through an intra-patch graph layer, fine-
grained features with time scales less than P of the original
series have been extracted. In this section, we aim to extract
features with time scale P based on the aggregated node set
H(0) through an inter-patch graph layer.

4.3.1. UPDATE

Each node in the set H(0) represents the overall feature
within time span P , and the reference time interval between
nodes in adjacent patches is approximately equal to P . We
connect the nodes located in adjacent patches pairwise in
node set H(0) by an edge to form a P -scale graph (inter-
patch graph). This inter-patch graph flexibly represents
the temporal and asynchronous inter-variable dependencies
of densely sampled variables and some sparsely sampled
variables with an origin sampling interval less than P at
scale P in a unified manner. We continue to update the
node states in this P -scale graph using GAT to extract the
dependencies at scale P . The formula for updating is:

h(0)
n,v = h(0)

n,v +
∑

n′∈{n−1,n+1}

V∑
v′=1

MHA(h(0)
n,v, h

(0)
n′,v′ , h

(0)
n′,v′).

(11)

4.3.2. AGGREGATION

After the node state update, the features at scale P are
extracted. Subsequently, to extract features at scale 2P , we
aggregate every two nodes located on adjacent patches of
the same variable by multi-time attention again to obtain
the input of the next inter-patch graph layer. Specifically,

we calculate the average timestamp between two adjacent

nodes as the reference time t̄
(1)
n,v =

t̄
(0)
2n−1,v+t̄

(0)
2n,v

m
(0)
2n−1,v+m

(0)
2n,v

, where

n = 1, 2, ..., N/2, m(0)
2n−1,v + m

(0)
2n,v > 0, and then we

aggregate the adjacent nodes to this reference time through
multi-time attention to obtain feature nodes of 2P scale:

h(1)
n,v =

∑
j∈{2n−1,2n}

MHA(ϕ(t̄
(0)
j,v), ϕ(t̄

(1)
n,v), h

(0)
j,v). (12)

The node state set after aggregating isH(1) = {h(1)
n,v | n =

1, 2, ..., N/2, v = 1, 2, ..., V,m
(1)
n,v = 1}, which is served as

input for the next inter-patch graph layer (2P -scale).

4.4. Hierarchical Architecture

Section 4.3 describes the first inter-patch graph layer (P -
scale). This layer takes H(0) as input, updates the node
states, and aggregates them toH(1) as the input of next inter-
patch graph layer (2P scale). Generalizing to the general
case, the formula for the l-th inter-patch graph layer is:

H(l) = Aggregation(Update(H(l−1))), (13)

where H(l) = {h(l)
n,v | n = 1, 2, ..., N/2l, v =

1, 2, ..., V,m
(l)
n,v = 1} and H(l−1) = {h(l−1)

n,v | n =

1, 2, ..., N/2l−1, v = 1, 2, ..., V,m
(l−1)
n,v = 1}. The recur-

sive form of Eq.(13) allows us to build a hierarchical archi-
tecture by stacking inter-patch graph layers, thereby further
extracting features at scales of 2P , 4P , 8P , 16P , .... Un-
til l = ⌈log2 N⌉, the output of this layer is H(⌈log2 N⌉) =

{h(⌈log2 N⌉)
n,v | n = 1, v = 1, 2, ..., V,m

(⌈log2 N⌉)
n,v = 1},

where a single node embedding is obtained for each variable
which has at least one observation. This process involves a
total of ⌈log2 N⌉ inter-patch graph layers, and fine-grained
features of relatively densely sampled variables are extracted
in the lower layers, while coarse-grained features of both
densely and sparsely sampled variables are extracted in the
upper layers. The node embedding of the v-th variable is
H(⌈log2 N⌉)

v ∈ Rdmodel .

4.5. Task Decoder

4.5.1. CLASSIFICATION

We calculate the sum of dmodel channels for each variable’s
node embedding to get a V-dimensional vector C and use
this to predict the final classification probabilities: ŷ =
Softmax(W yC+ by). The training objective is to minimize
the cross-entropy loss between ŷ and the ground truth y.

4.5.2. FORECASTING

Given a query qj = (tj , vj), we follow (Zhang et al., 2024)
by concatenating the node embedding of the query variable
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vj with the embedding of the query time tj , and then pass it
through an MLP projection layer to generate the forecasting
result: ẑj = MLP([H(⌈log2 N⌉)

vj ∥ ϕ(tj)]). The training ob-
jective is to minimize the mean squared error loss between
ẑj and the ground truth zj . The pseudo-code for Hi-Patch is
presented in Appendix A (Algorithm 1).

5. Experiment
In this section, we present forecasting and classification
experiments using a range of models and 8 datasets.

5.1. Experimental Setting

5.1.1. DATASETS AND BASELINES

For the forecasting task, we follow (Zhang et al., 2024)
and use four datasets: PhysioNet (Silva et al., 2012),
MIMIC-III (Johnson et al., 2016), Human Activity, and
USHCN (Menne et al., 2015), covering the fields of health-
care, biomechanics, and climate science. We compare our
method with seventeen relevant baselines, covering the
SOTA models from (1) MTS forecasting: iTransformer (Liu
et al., 2024), ModernTCN(Luo & Wang, 2024), TimesNet
(Wu et al., 2023), PatchTST (Nie et al., 2023), (2) multi-
scale MTS forecasting: Pathformer (Chen et al., 2024a)
, TimeMixer (Wang et al., 2024b), MSGNet (Cai et al.,
2024), MICN (Wang et al., 2023), (3) IMTS classification:
Warpformer (Zhang et al., 2023), Raindrop (Zhang et al.,
2022), GRU-D (Che et al., 2018), (4) IMTS forecasting:
tPatchGNN (Zhang et al., 2024), GraFITi (Yalavarthi et al.,
2024), CRU (Schirmer et al., 2022), mTAND (Shukla &
Marlin, 2021), Neural Flows (Biloš et al., 2021), Latent
ODEs (Rubanova et al., 2019).

For the classification task, we conduct experiments on four
datasets in medical field where IMTS is most widely used,
namely P19 (Reyna et al., 2020), PhysioNet (Silva et al.,
2012), MIMIC-III (Johnson et al., 2016) and P12 (Gold-
berger et al., 2000) where PhysioNet is a reduced version
of P12 considered by prior work (Shukla & Marlin, 2021).
We compare our method with the state-of-the-art methods
for irregular time series classification, including GRU-D
(Che et al., 2018), ODE-RNN (Rubanova et al., 2019), IP-
Net (Shukla & Marlin, 2019), SeFT (Horn et al., 2020),
mTAND (Shukla & Marlin, 2021), Raindrop (Zhang et al.,
2022), StraTS (Tipirneni & Reddy, 2022), DuETT (Labach
et al., 2023), ViTST (Li et al., 2024a) and Warpformer
(Zhang et al., 2023). In addition, we also compare our
method with two approaches initially designed for forecast-
ing tasks, namely DGM2-O (Wu et al., 2021b) and MTGNN
(Wu et al., 2020). The implementation and hyperparameter
settings of these baselines are consistent with those of the
original paper. More details of datasets and baselines can
be found in Appendix B and C.

5.1.2. EVALUATION SETUP

For the forecasting task, we follow the data pre-processing
method described in (Zhang et al., 2024) and randomly
divide all the instances among each dataset into training,
validation, and test sets according to ratios of 6:2:2. We use
Mean Square Error (MSE) and Mean Absolute Error (MAE)
to evaluate forecasting performance.

For the classification task, we follow the method described
in (Harutyunyan et al., 2019) and divide the dataset into
three parts for training, validation, and testing with the ratio
of 70%,15%,15% on the MIMIC-III dataset. For the re-
maining three datasets, we adhered to (Zhang et al., 2022)’s
approaches, and the ratio of training, validation, and test-
ing set is 8:1:1. We measure the classification performance
with the Area Under the Receiver Operating Characteris-
tic Curve (AUROC) and Area Under the Precision-Recall
Curve (AUPRC) since all the four datasets are binary classi-
fication datasets with highly imbalanced class distribution.
More details of metrics can be found in Appendix D.

5.1.3. IMPLEMENTATION DETAILS

We adopt the Adam (Kingma & Ba, 2014) optimizer with a
learning rate of 0.001, stopping it when the validation loss
doesn’t decrease over 10 epochs. All experiments are con-
ducted with five random seeds, and the average and standard
deviation are reported. All the models are experimented
with using the PyTorch library on 2 GeForce RTX-3090-
24G GPUs. The detailed settings of hyperparameters can be
found in Appendix E.

5.2. Main Results

For the forecasting task, we test the model’s performance
under 3 varying observations and forecast horizons on each
dataset. Table 1 shows the results of the default horizon, and
the complete results are presented in Appendix F.1. Table 2
reports the models’ classification performance on the other
four datasets. In addition, to demonstrate the robustness
of our method, we test whether Hi-Patch can achieve good
classification performance when a subset of variables is
completely missing. Table 9 (Appendix F.2) reports the
results under different missing ratios. In summary, Hi-Patch
achieves the best performance in 62 out of 72 metrics across
8 datasets for both classification and forecasting tasks.

Among these baselines, regular MTS forecasting models do
not demonstrate competitive performance in IMTS forecast-
ing since they have limited capability to handle the irreg-
ularities within and among variables in IMTS. In contrast,
although our Hi-Patch is initially designed for IMTS, it also
demonstrates competitive performance in regular MTS fore-
casting, as shown in Appendix F.3. As for the baselines
specifically designed for IMTS, most of them focus on ex-
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Table 1. Method benchmarking on IMTS forecasting. The best results are highlighted in bold, and the second-best results are in underlined.
The results in the table are presented in the form of (Mean ± Std). ‘-’ indicates a numerical overflow error.

Methods Human Activity (3000ms → 1000ms) USHCN (24months → 1month) PhysioNet (24h → 24h) MIMIC-III (24h → 24h)

MSE×10−3 MAE×10−2 MSE×10−1 MAE×10−1 MSE×10−3 MAE×10−2 MSE×10−2 MAE×10−2

iTransformer 3.97 ± 0.10 4.30 ± 0.08 6.17 ± 0.07 4.18 ± 0.55 53.55 ± 19.59 16.87 ± 4.51 7.24 ± 0.50 21.24 ± 0.97
ModernTCN 3.99 ± 0.05 4.32 ± 0.04 5.83 ± 0.13 3.58 ± 0.09 28.99 ± 11.06 5.94 ± 0.20 10.07 ± 9.79 10.76 ± 1.10

TimesNet 3.79 ± 0.05 4.28 ± 0.04 5.62 ± 0.12 3.56 ± 0.12 9.30 ± 0.70 5.50 ± 0.34 2.34 ± 0.54 8.09 ± 0.10
PatchTST 5.21 ± 0.33 5.10 ± 0.20 5.88 ± 0.10 3.66 ± 0.13 25.56 ± 4.42 10.90 ± 1.08 7.24 ± 0.65 19.80 ± 0.87

Pathformer 3.40 ± 0.16 3.65 ± 0.08 – – 6.75 ± 0.41 4.61 ± 0.20 – –
TimeMixer 4.97 ± 0.31 5.02 ± 0.16 5.88 ± 0.10 3.59 ± 0.07 13.98 ± 0.31 6.88 ± 0.09 4.78 ± 0.09 14.29 ± 0.06
MSGNet 6.32 ± 0.16 6.06 ± 0.09 5.75 ± 0.06 3.64 ± 0.09 9.84 ± 0.29 5.79 ± 0.10 2.65 ± 0.18 9.10 ± 0.27

MICN 6.93 ± 0.12 6.04 ± 0.06 5.99 ± 0.11 3.69 ± 0.08 10.34 ± 0.24 6.00 ± 0.14 2.36 ± 0.06 8.43 ± 0.11

Warpformer 2.61 ± 0.02 3.12 ± 0.01 5.09 ± 0.03 3.10 ± 0.04 5.04 ± 0.14 3.72 ± 0.06 1.76 ± 0.30 7.27 ± 0.15
Raindrop 4.42 ± 0.25 4.65 ± 0.14 5.64 ± 0.10 3.29 ± 0.03 10.63 ± 0.29 6.02 ± 0.19 2.31 ± 0.07 8.61 ± 0.12
GRU-D 3.94 ± 0.29 4.37 ± 0.21 5.17 ± 0.06 3.21 ± 0.05 5.76 ± 0.34 4.53 ± 0.15 2.35 ± 0.06 8.34 ± 0.22

tPatchGNN 2.79 ± 0.09 3.24 ± 0.06 5.00 ± 0.03 3.07 ± 0.05 5.06 ± 0.10 3.75 ± 0.07 1.97 ± 0.05 7.76 ± 0.22
GraFITi 3.03 ± 0.14 3.45 ± 0.10 5.07 ± 0.03 2.97 ± 0.04 5.11 ± 0.19 3.96 ± 0.09 1.76 ± 0.04 7.28 ± 0.13

CRU 3.03 ± 0.04 3.60 ± 0.04 5.15 ± 0.50 3.18 ± 0.03 6.43 ± 0.62 4.51 ± 0.16 2.23 ± 0.03 7.99 ± 0.22
mTAND 3.14 ± 0.09 3.71 ± 0.06 5.03 ± 0.05 3.00 ± 0.06 6.18 ± 0.31 4.44 ± 0.19 2.15 ± 0.05 8.00 ± 0.06

NeuralFlow 4.29 ± 0.63 4.61 ± 0.43 5.41 ± 0.05 3.35 ± 0.06 7.68 ± 0.37 4.84 ± 0.19 2.34 ± 0.05 8.09 ± 0.09
Latent-ODE 3.32 ± 0.10 3.91 ± 0.08 5.16 ± 0.04 3.21 ± 0.07 6.85 ± 0.28 4.77 ± 0.17 2.11 ± 0.15 7.76 ± 0.08

Hi-Patch 2.57 ± 0.02 3.11 ± 0.03 4.94 ± 0.05 2.96 ± 0.04 4.86 ± 0.03 3.62 ± 0.07 1.75 ± 0.26 7.24 ± 0.18

Table 2. Method benchmarking on IMTS classification. The best results are highlighted in bold, and the second-best results are in
underlined. The results in the table are presented in the form of (Mean ± Std %).

Methods P19 PhysioNet MIMIC-III P12

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

GRU-D 88.7 ± 1.2 57.6 ± 2.3 79.1 ± 6.9 42.7 ± 7.2 82.2 ± 1.8 43.3 ± 2.1 79.6 ± 0.6 41.7 ± 1.8
ODE-RNN 87.1 ± 1.0 52.6 ± 3.2 75.5 ± 2.8 33.7 ± 4.1 81.0 ± 0.6 42.3 ± 0.7 78.8 ± 0.6 37.4 ± 2.6

IP-Net 90.2 ± 0.2 58.6 ± 0.8 86.8 ± 0.6 55.8 ± 1.4 84.1 ± 0.1 47.1 ± 0.9 83.7 ± 0.3 46.3 ± 1.3
SeFT 84.0 ± 0.3 49.3 ± 0.5 75.5 ± 0.2 29.4 ± 0.9 67.9 ± 0.2 23.2 ± 0.4 78.1 ± 0.5 35.9 ± 0.8

MTGNN 88.5 ± 1.0 55.8 ± 1.5 77.1 ± 4.4 35.4 ± 7.3 78.5 ± 2.3 35.2 ± 3.1 82.1 ± 1.5 41.8 ± 2.1
mTAND 82.9 ± 0.9 32.2 ± 1.5 86.8 ± 1.3 52.5 ± 1.3 83.8 ± 0.3 46.6 ± 0.5 85.3 ± 0.3 49.3 ± 1.0

DGM2-O 91.6 ± 0.5 60.0 ± 1.3 85.8 ± 0.7 50.4 ± 3.2 80.4 ± 0.5 36.0 ± 0.8 85.8 ± 0.1 48.3 ± 0.7
Raindrop 87.6 ± 2.7 61.1 ± 1.4 81.2 ± 0.9 37.3 ± 2.0 79.8 ± 1.3 35.2 ± 1.1 82.0 ± 0.6 42.7 ± 1.7
StraTS 91.2 ± 0.3 58.4 ± 1.4 84.9 ± 1.5 47.3 ± 5.3 84.4 ± 0.4 46.4 ± 0.8 86.7 ± 0.7 52.1 ± 1.5
DuETT 88.2 ± 0.5 56.0 ± 3.9 81.3 ± 1.4 44.9 ± 1.4 78.8 ± 0.8 34.3 ± 1.0 83.4 ± 1.2 45.4 ± 1.5
ViTST 91.7 ± 0.1 57.5 ± 0.7 81.3 ± 1.9 37.4 ± 2.9 81.8 ± 0.3 39.6 ± 1.3 86.3 ± 0.1 50.8 ± 1.5

Warpformer 91.8 ± 0.4 60.6 ± 2.6 83.3 ± 0.7 43.5 ± 2.3 84.6 ± 0.3 46.6 ± 0.9 85.4 ± 0.5 50.4 ± 1.5

Hi-Patch 92.1 ± 0.4 61.1 ± 2.1 86.8 ± 0.9 57.3 ± 1.9 84.8 ± 0.2 47.2 ± 1.0 86.9 ± 0.7 53.3 ± 0.9

tracting correlations at the origin scale, failing to achieve
comprehensive multi-scale feature extraction and resulting
in suboptimal performance. Additionally, we conduct ex-
periments with a fixed prediction horizon while varying the
observation horizons to demonstrate our model’s ability to
learn more temporal dependencies from long-term data in
Appendix F.4. Furthermore, we provide the computational
efficiency analysis in Appendix G and comprehensive dis-
cussions on the technical details of Hi-Patch and existing
methods in Appendix H.

5.3. Ablation Study

In this section, we investigate the performance benefits gen-
erated by each key component of the proposed method on
the forecasting task. We compare the Hi-Patch with its four
variants: (1) w/o Hie: We remove the hierarchical multi-
scale architecture and set the patch size to the time span

Table 3. Ablation results of Hi-Patch on four datasets. The results
in the table are presented in the form of (Mean ± Std).

Methods Hunam Activity USHCN

MSE×10−3 MAE×10−2 MSE×10−1 MAE×10−1

Hi-Patch 2.57 ± 0.02 3.11 ± 0.03 4.94 ± 0.05 2.96 ± 0.04

w/o Hie 2.70 ± 0.04 3.13 ± 0.03 5.35 ± 0.13 3.26 ± 0.13
w/o DVDT 2.68 ± 0.04 3.12 ± 0.01 5.21 ± 0.03 3.11 ± 0.12

w/o 3W 2.60 ± 0.01 3.17 ± 0.03 4.99 ± 0.03 3.08 ± 0.10
w/o TEAGG 2.77 ± 0.02 3.22 ± 0.03 5.23 ± 0.04 3.13 ± 0.03

of the entire historical window, only extracting features at
the original scale. (2) w/o DVDT: We removed the asyn-
chronous edges of different variables at different times in
intra/inter patch graph layers, retaining only the edges be-
tween nodes of the same variable at different times and
different variables at the same time; (3) w/o 3W: We use
only one set of attention parameter matrices {Wq , Wk, Wv}
for three types of edges; (4) w/o TEAGG: We aggregate
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nodes with the same variables within a patch using mean ag-
gregation rather than multi-time attention aggregation. The
results on the Human Activity dataset and USHCN dataset
are presented in Table 3, while the results for the remaining
datasets are presented in Table 11 (Appendix I). The results
show that all components of Hi-Patch are necessary.

(a) USHCN (b) PhysioNet

Figure 3. Effect of different scale quantities on two datasets.

(a) USHCN (b) PhysioNet

Figure 4. Distribution of sample length and time span on two
datasets. Each blue dot represents a sample, with its x-coordinate
indicating the sample length and the left y-axis representing its
time span. The red curve is the distribution curve of sample length.

5.4. Effect of Scale Quantity

Figures 3 and 8 illustrate the impact of different scale quan-
tities on four datasets. Generally, increasing the number of
scales improves performance within a certain range. How-
ever, beyond a certain point, further increasing the number
of scales has a negative effect. This is because the number
of scales is inversely related to patch size in our method: as
the number of scales increases, the patch size decreases. A
patch that is too small may not contain enough observations
to extract local patterns effectively. Additionally, we observe
that on the PhysioNet and MIMIC-III datasets, performance
with too many scales is even worse than with a single scale.
To further investigate, we visualize the distribution of sam-
ple lengths and time spans across the four datasets in Figures
4 and 9. We find that samples in PhysioNet and MIMIC-III
primarily exhibit a ‘short length, long span’ characteristic,
which indicates that samples in these two datasets predomi-
nantly show coarse-grained patterns with few fine-grained
local features. In such cases, using too many scales becomes
redundant and can significantly degrade performance. We
provide visualizations of the multi-scale views at different
layers in our model in Appendix K.

(a) USHCN (b) PhysioNet

Figure 5. Effect of different patch size

5.5. Effect of Patch Size

The impact of patch size on the performance of our model in
two real-world datasets, USHCN (climate) and PhysioNet
(clinical), is illustrated in Figure 5. For the USHCN dataset,
the optimal model performance is achieved at a patch size of
1.5 months. At this patch size, our hierarchical architecture
extracts features at scales of 1.5 months, 3 months, 6 months,
and 12 months, which precisely cover several important ob-
servational scales in climatology, including the seasonal
(Doblas-Reyes et al., 2013) (3 months), monsoonal (Clift
& Plumb, 2008) (6 months) and annual (Almazroui et al.,
2012) cycle (12 months). For the PhysioNet dataset, the
optimal patch size is 6 hours. At this patch size, our model
extracts features at the 6-hour, 12-hour, and 24-hour scales,
which also align with actual cycles in clinical medicine.
Among them, 6 hours is a common clinical monitoring pe-
riod used in medical practice (Seymour et al., 2017), while
12-hour and 24-hour cycles reflect circadian rhythms and
daily cycles, which are crucial for assessing patients’ phys-
iological changes and disease fluctuations (Klerman et al.,
2022). This alignment with real-world periodicity enables
it to better capture the inherent temporal dynamics in di-
verse applications. By aligning with critical observational
and diagnostic timeframes, our model enhances its predic-
tive power and interpretability, making it highly adaptable
and effective across practical scenarios that require nuanced
temporal understanding.

6. Limitations
Although our proposed method introduces a multi-scale
framework for sparse IMTS, it exhibits certain limitations
in terms of scalability. As detailed in Appendix G, the pri-
mary computational cost of our approach stems from the
intra-patch graph layer, whose complexity scales quadrati-
cally with the number of observed points within each patch.
While this cost is acceptable for sparsely sampled IMTS
data, it becomes prohibitive when applied to large-scale
datasets with dense observations. Consequently, a promis-
ing direction for future work is to reduce the computational
complexity of the intra-patch graph layer in Hi-Patch to
improve its scalability. Appendix G.3 provides further dis-
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cussion on this topic.

7. Conclusion
In this paper, we propose Hi-Patch for modeling IMTS.
The proposed method leverages the intra-patch/inter-patch
graph neural network to flexibly represent and fully extract
features at specific scales in IMTS. Based on this, the hierar-
chical architecture is used to effectively achieve multi-scale
modeling of IMTS in a bottom-up manner (from local to
global). Experimental results demonstrate that Hi-Patch
outperforms existing methods in both IMTS forecasting and
classification tasks. Our future work will focus on adaptive
multi-scale modeling of IMTS, which selects the most suit-
able scales based on the specific temporal characteristics and
dynamics of each sample to further improve performance.
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A. Algorithm of Hi-Patch

Algorithm 1 The pseudo-code of Hi-Patch for forecasting
Input: An IMTS sample Si with M observations, a split time tS historical window Xi := {(tj , zj , vj)|j = 1, ...,M, tj ≤
tS}, forecasting query Qi := {[(tj , vj)]|j = 1, ...,M, tj > tS}, patch size P , total time span T

Output: Predicted value set Ẑi

1: ▷ Observation Encoder
2: for j = 1, 2, ..., |Xi| do
3: encode observation tuple oj = (tj , zj , vj) as graph node embedding hj using Eq.(5)
4: end for
5: ▷ Intra-Patch Graph Layer
6: for p = 1, 2, ...,

⌈
T
P

⌉
do

7: construct intra-patch graph in patch p using Eq.(6) and (7)
8: update states of intra-patch graph nodes in patch p through GAT using Eq.(8) and Eq.(9)
9: aggregate nodes of the same variable in patch p through multi-time attention using Eq.(10), getH(0)

10: end for
11: ▷ Inter-Patch Graph Layers
12: for l = 1, 2, ..., ⌈log2

⌈
T
P

⌉
⌉ do

13: construct lP -scale inter-patch graph
14: update states of lP -scale inter-patch graph nodes through GAT using Eq.(11)
15: aggregate nodes of every two adjacent nodes of the same variable in lP -scale inter-patch graph through multi-time

attention using Eq.(12), getH(l)

16: end for
17: ▷ Task Decoder
18: for j = 1, 2, ..., |Qi| do

19: ẑj = MLP([H(⌈log2 ⌈ T
P ⌉⌉)

vj ∥ ϕ(tj)])
20: Ẑi ← Ẑi ∪ {ẑj}
21: end for
22: return Ẑi

B. Datasets
We use 8 irregularly multivariate time series datasets to evaluate the performance of our model and baseline models. The
dataset statistics are summarized in Table 4.

Table 4. Dataset statistics.
Task Datasets # Samples # Variables Avg Sample Length Missing Ratio

Forecasting

Human Activity 5400 12 120 75%
USHCN 26736 5 163 77.9%

PhysioNet 11988 36 74 88.4%
MIMIC-III 23457 96 46 96.7%

Classification

P19 38803 34 36 94.9%
P12 11988 36 74 88.4%

MIMIC-III 21107 16 78 65.5%
PhysioNet 3997 36 74 84.9%

B.1. Forecasting

For the forecasting task, we use four datasets and follow (Zhang et al., 2024)’s data preprocessing program. Here is the
detailed information of these datasets. We use three historical/forecasting horizons on each dataset.
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PhysioNet (Silva et al., 2012) This dataset includes 12000 IMTS from different patients, each with 41 clinical signals
collected irregularly during the first 48 hours of ICU admission. We use the first 24/36/12 hours as the observed data to
predict the queried values in the subsequent 24/12/36 hours.

MIMIC-III (Johnson et al., 2016) MIMIC-III is a clinical database containing IMTS data from 23457 patients, each with
96 variables recorded during the first 48 hours of ICU admission. We use the first 24/36/12 hours as the observed data to
predict the queried values in the subsequent 24/12/36 hours.

Human Activity This dataset consists of 12 irregularly measured 3D positional variables from sensors worn on the ankles,
belts, and chests of five individuals performing various activities. To better align with realistic forecasting scenarios, the
original time series is chunked into 5400 IMTS, each spanning 4000 milliseconds. The first 3000/2000/1000 milliseconds
are used as observed data to predict the sensor positions for the next 1000/2000/3000 milliseconds.

USHCN (Menne et al., 2015) The USHCN dataset includes over 150 years of climate data from multiple U.S. stations,
covering 5 climate variables. Following established preprocessing methods, we focus on data from 1114 stations between
1996 and 2000, resulting in 26736 IMTS. Each instance uses data from the previous 24 months to predict the next 1/6/12
month’s climate conditions.

B.2. Classification

P19 (Reyna et al., 2020) The PhysioNet Sepsis Early Prediction Challenge 2019 dataset contains medical records of
38,803 patients. Each record includes 34 variables and a static vector detailing attributes such as age, gender, time between
hospital and ICU admission, ICU type, and ICU length of stay in days. Each patient also receives a binary label indicating
whether sepsis occurs within the next 6 hours. We exclude samples with excessively short or long time series following
(Zhang et al., 2022). Available at https://physionet.org/content/challenge-2019/1.0.0/.

P12 (Goldberger et al., 2000) The P12 dataset comprises data from 11,988 patients after removing 12 inappropriate
samples identified by (Horn et al., 2020). Each record includes multivariate time series data from the first 48 hours of ICU
stay, consisting of 36 sensor measurements (excluding weight) and a static vector with 9 elements, including age and gender.
Patients are labeled based on ICU stay duration: a negative label indicates three days or less, and a positive label indicates
more than three days. Available at https://physionet.org/content/challenge-2012/1.0.0/.

MIMIC-III (Johnson et al., 2016) MIMIC-III is a widely used dataset containing de-identified EHRs of ICU patients
admitted to Beth Israel Deaconess Medical Center from 2001 to 2012, originally with around 57,000 records covering
variables such as medications and vital signs. We focus on the in-hospital mortality prediction task, using a subset established
by (Harutyunyan et al., 2019). After preprocessing, our dataset includes 16 features and 21,107 data points. Available at
https://physionet.org/content/mimiciii/1.4/.

PhysioNet (Silva et al., 2012) Physionet contains the data from the first 48 hours of ICU patients, which is a reduced
version of P12 considered by prior work. Therefore, we follow the same preprocessing methods used for the P12 dataset.
The processed data set includes 3997 labeled instances. We focus on predicting in-hospital mortality.

C. Baselines
C.1. Forecasting

C.1.1. METHODS FOR REGULAR MTS

For methods for regular MTS, we organize each sample into a V × Th history matrix and a V × Tf forecasting matrix,
where V represents the maximum number of variables and Th/Tf represents the historical/forecasting length of the sample.
Unobserved positions are filled with zeros, the sequence length is set to the maximum historical length across all samples,
and the forecasting length is set to the maximum forecasting length across all samples.

iTransformer (Liu et al., 2024) uses inverted Transformers for time series forecasting. We use the following setting in our
experiment: elayers = 3, dlayers = 1, factor = 3, dmodel = 512, dff = 512.
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TimesNet (Wu et al., 2023) analyses general time series through temporal 2D-Variation. We use the following setting in
our experiment: elayers = 2, dlayers = 1, factor = 3, dmodel = 256, dff = 512, top-k = 5.

PatchTST (Nie et al., 2023) is a Transformer-based model using patch and channel independence for long-term time
series forecasting. We use the following setting in our experiment: elayers = 2, dlayers = 1, factor = 3, patch len = 16,
stride = 8.

MICN (Wang et al., 2023) achieves multi-scale local and global context modeling for long-term time series forecasting.
We use the following setting in our experiment: elayers = 2, dlayers = 1, factor = 3, dmodel = 256, dff = 512, top k = 5,
decomp kernel = 32, conv kernel = 24, isometric kernel = [18, 6].

TimeMixer (Wang et al., 2024b) achieves complementary predictive capabilities by disentangling variations in multi-scale
series. We use the following setting in our experiment: elayers = 3, dlayers = 1, factor = 3, dmodel = 16, dff = 32,
down sampling layers = 3, down sampling window = 2.

For the above 5 methods, we use the implementation in Time-Series-Library

ModernTCN (Luo & Wang, 2024) is a modern pure convolution structure designed for general time series analysis. We use
the implementation in https://github.com/luodhhh/ModernTCN and the following setting in our experiment: ffn ratio = 8,
patch size = 8, patch stride = 4, num blocks = 1, large size = 51, small size = 5, dims = 64

Pathformer (Chen et al., 2024a) is a multi-scale transformer architecture with adaptive pathways for time series forecasting.
We use the implementation in https://github.com/decisionintelligence/pathformer and the following setting in our experiment:
k = 2, layer nums = 3, dmodel = 16, dff = 64.

MSGNet (Cai et al., 2024) learns multi-scale inter-series correlations for multivariate time series forecasting. We use the
implementation in https://github.com/YoZhibo/MSGNet and the following setting in our experiment: elayers = 2, dmodel =
512, dff = 64, n heads = 8, top k = 5, dropout = 0.1, nums kernels = 6, conv channel = 32, skip channel = 32,
gcn depth = 2, propalpha = 0.3, node dim = 10, gcn dropout = 10.

C.1.2. METHODS FOR IMTS

IMTS forecasting methods can directly make predictions. For IMTS classification methods, we use them as encoders to
extract variable-level representations for each sample, followed by forecasting using the decoder described in Section 4.5.2.

Warpformer (Zhang et al., 2023) A transformer-based network that captures features at different scales in IMTS using
warping modules and dual attention mechanisms. We use three scales with normalized length L̃(0) = 0, L̃(1) = 0.2 and
L̃(2) = 1. The dimension of representations D is set as 32. The attention heads and the layers of the warpformer are set as 1
and 2, respectively. We use the implementation at https://github.com/imJiawen/Warpformer.

Raindrop (Zhang et al., 2022) A graph neural network that embeds IMTS while learning the dynamics of sensors purely
from observation data. We use the following setting in our experiment: dob = 4, pt = 16, rv = 16, L = 2, dk = 20,
da = V . We use the implementation at https://github.com/mims-harvard/Raindrop.

GRU-D (Che et al., 2018) GRU-D takes two representations of missing patterns, i.e., masking and time interval, and
effectively incorporates them into a deep model architecture. The number of hidden states of GRU-D is set as 49. We use
the implementation from https://github.com/Han-JD/GRU-D.

tPatchGNN (Zhang et al., 2024) is a transformable patching graph neural network for IMTS forecasting. We use the
implementation in https://github.com/usail-hkust/t-PatchGNN and use the hyperparameters specified in their scripts.

GraFITi (Yalavarthi et al., 2024) use bipartite graph for representing and forecasting of IMTS. We use the fol-
lowing setting in our experiment: latent dim = 128, n layers = 4, nheads = 1. We use the implementation at
https://github.com/yalavarthivk/GraFITi.
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CRU (Schirmer et al., 2022) models IMTS with continuous recurrent units. We use the following setting in our ex-
periment: latent state dim = 20, hidden units = 50, bandwidth = 10, num basis = 20, trans covar = 0.1. We use the
implementation at https://github.com/boschresearch/Continuous-Recurrent-Units.

mTAND (Shukla & Marlin, 2021) A deep learning framework for IMTS data that learns an embedding of continuous
time values and uses an attention mechanism to produce a fixed-length representation. We set the latent dimension and
the hidden size of GRU to 32. The number of reference points and the dimension of time embedding is 128. We use the
implementation at https://github.com/reml-lab/mTAN.

NeuralFlows (Biloš et al., 2021) use neural networks to model ODE solution curves to mitigate the expensive numerical
solvers in neural ODEs. We use the implementation at https://github.com/mbilos/neural-flows-experiments and the following
setting in our experiment: flow model=‘CouplingFlow’, hidden dim = 50, hidden layers = 3, latents = 20, rec dims = 40.

Latent-ODEs (Rubanova et al., 2019) is an ODE-based model that improves RNNs with continuous-time hidden state
dynamics specified by neural ODEs. We use the implementation in https://github.com/YuliaRubanova/latent ode and
the following setting in our experiment: latents = 20, units = 50, gen layers = 3, rec dims = 40, rec layers = 3,
gru units = 50.

C.2. Classification

ODE-RNN (Rubanova et al., 2019) ODE-RNN uses neural ODEs to model hidden state dynamics and an RNN to update
the hidden state in the presence of a new observation. The latent dimension is set as 40, and the ODE function has 3 layers
with 50 units. We use the implementation at https://github.com/YuliaRubanova/latent ode

SEFT (Horn et al., 2020) A set function approach where all the observations are modeled individually before pooling
them together using an attention-based approach. We use a constant architecture for the attention network f ′ with 2 layers, 4
heads and dimensionality of the dot product space d of 128. In addition, the attention network f ′ was always set to use
mean aggregation. We use the implementation from https://github.com/BorgwardtLab/SeFT.

IP-Net (Shukla & Marlin, 2019) A model architecture for IMTS data based on several semi-parametric interpolation
layers organized into an interpolation network followed by a prediction network GRU. The number of reference points is set
as 192. The hidden size of GRU is 100. We take the source code at https://github.com/mlds-lab/interp-net.

DGM2-O (Wu et al., 2021b) A generative model, which tracks the transition of latent clusters instead of isolated feature
representations, achieves robust sparse time series modeling. We use the DGM2-O and set both the hidden dimension and
the cluster num as 10. We use the source code at https://github.com/thuwuyinjun/DGM2.

MTGNN (Wu et al., 2020) A general graph neural network framework designed for MTS data. We use 5 graph
convolution and 5 temporal convolution modules with the dilation exponential factor 2. The graph convolution and temporal
convolution modules have 16 output channels. The skip connection layers all have 32 output channels. The first layer of
the output module has 64 output channels, and the second layer has 1 output channel. We use the implementation from:
https://github.com/nnzhan/MTGNN.

StraTS (Tipirneni & Reddy, 2022) is a self-supervised transformer for sparse IMTS. We use the implementation at
https://github.com/sindhura97/STraTS and the following setting in our experiment: hidden dim = 64, num layers = 2,
num heads = 16, dropout = 0.2.

DuETT (Labach et al., 2023) is a dual event time transformer for Electronic Health Records (EHRs). We use the
implementation at https://github.com/layer6ai-labs/DuETT and the default settings of the model declaration in this repository.

ViTST (Li et al., 2024a): transforms IMTS into line graph images and adapts powerful vision transformers
to perform time series classification in the same way as image classification. We use the implementation at
https://github.com/Leezekun/ViTST.
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Please refer to C.1.2 for details of GRU-D (Che et al., 2018), mTAND (Shukla & Marlin, 2021) , Raindrop (Zhang et al.,
2022) and Warpformer (Zhang et al., 2023).

D. Performance Metrics
MSE MSE (Mean Squared Error) measures the average of the squared differences between predicted and actual values.
The calculation formula is:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (14)

where yi represents the actual value, ŷi represents the predicted value, and n is the number of observations. A smaller MSE
indicates better model performance. Since errors are squared, MSE is sensitive to large errors or outliers.

MAE MAE (Mean Absolute Error) measures the average of the absolute differences between predicted and actual values.
The calculation formula is:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (15)

where yi represents the actual value, ŷi represents the predicted value, and n is the number of observations. A smaller MAE
indicates better model performance. Compared to MSE, MAE is less sensitive to outliers and provides a straightforward
average measure of error.

AUROC AUROC is commonly employed in binary classification tasks, where one class is designated as positive and the
other as negative. It represents the area under the Receiver Operating Characteristic (ROC) curve, constructed by plotting the
True Positive Rate (TPR) against the False Positive Rate (FPR). AUROC ranges from 0 to 1, with a higher value indicating
better model performance in accurately discriminating between positive and negative instances. An AUROC equal to 0.5
indicates a model’s performance equivalent to random guessing, while an AUROC greater than 0.5 signifies superiority over
random guessing.

AUPRC The Area Under the Precision-Recall Curve is widely used as a performance metric for imbalanced binary
classification tasks. It provides a comprehensive assessment of a model’s precision-recall trade-off. The Precision-Recall
curve is constructed by plotting recall on the x-axis and precision on the y-axis. AUPRC ranges from 0 to 1, and a higher
value indicates better model performance in achieving high precision and recall simultaneously. It has been suggested as a
good criterion for unevenly distributed classification problems (Davis & Goadrich, 2006).

E. Hyperparameters Settings
We search all hyperparameters in the grid for our proposed model Hi-Patch. Specifically, our model has a total of 4
hyperparameters: patch size P , dimension of node state dmodel, number of multi-head attention heads nheads, number of GAT
layers L. Since the number of patches N =

⌈
T
P

⌉
and the number of inter-patch graph layers equals to ⌈log2 N⌉ where T is

the dataset-specific maximum time span, we search N over the range {2, 4, 8, 16, 32} to maintain the number of inter-patch
graph layers as an integer. Thus the patch size P of each dataset is determined by P =

⌈
T
N

⌉
. Additionally, we search dmodel

in {16, 32, 64, 128}, nheads in {1, 2, 4, 8} and L in {1, 2, 3}. The best hyperparameters for each dataset are reported in the
code.
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F. Additional Experiments
F.1. Varying Observation and Forecast Horizons

Table 5. Performance of varying observation and forecast horizons on Human Activity dataset. The best results are highlighted in bold,
and the second-best results are in underlined. The results in the table are presented in the form of (Mean ± Std).

Horizon 2000ms → 2000ms 1000ms → 3000ms

Metric MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2

iTransformer 7.49 ± 4.72 6.08 ± 2.17 5.58 ± 0.04 5.13 ± 0.05
ModernTCN 5.26 ± 0.06 4.96 ± 0.04 12.12 ± 1.01 5.72 ± 0.07

TimesNet 5.38 ± 0.30 5.32 ± 0.20 9.90 ± 0.42 7.34 ± 1.81
PatchTST 7.25 ± 0.29 6.26 ± 0.17 8.97 ± 1.96 6.94 ± 0.94

Pathformer 4.67 ± 0.22 4.58 ± 0.17 5.49 ± 0.12 5.05 ± 0.06
TimeMixer 5.39 ± 0.54 5.05 ± 0.38 5.96 ± 0.19 5.36 ± 0.10
MSGNet 7.90 ± 0.36 6.85 ± 0.13 8.29 ± 0.22 7.02 ± 0.12
MICN 7.57 ± 0.05 6.43 ± 0.02 8.16 ± 0.12 6.78 ± 0.05

Warpformer 3.60 ± 0.08 3.81 ± 0.03 4.26 ± 0.11 4.26 ± 0.04
Raindrop 5.57 ± 0.34 5.15 ± 0.11 5.75 ± 0.33 5.37 ± 0.22
GRU-D 5.93 ± 0.10 5.66 ± 0.66 6.14 ± 0.76 5.75 ± 0.49

tPatchGNN 3.71 ± 0.20 3.89 ± 0.16 4.56 ± 0.08 4.32 ± 0.06
GraFITi 4.59 ± 0.04 4.45 ± 0.04 4.91 ± 0.07 4.62 ± 0.03

CRU 4.12 ± 0.08 4.43 ± 0.06 4.85 ± 0.09 4.86 ± 0.07
mTAND 4.38 ± 0.37 4.59 ± 0.29 5.29 ± 0.32 5.12 ± 0.23

NeuralFlow 5.47 ± 0.49 5.35 ± 0.28 6.01 ± 0.91 5.66 ± 0.60
Latent-ODE 5.04 ± 0.46 5.11 ± 0.29 5.48 ± 0.21 5.33 ± 0.14

Hi-Patch 3.29 ± 0.04 3.70 ± 0.04 4.21 ± 0.08 4.25 ± 0.07

Table 6. Performance of varying observation and forecast horizons on MIMIC-III dataset. The best results are highlighted in bold, and the
second-best results are in underlined. The results in the table are presented in the form of (Mean ± Std).

Horizon 36h → 12h 12h → 36h

Metric MSE×10−2 MAE×10−2 MSE×10−2 MAE×10−2

iTransformer 7.27 ± 0.04 21.52 ± 0.09 7.44 ± 0.21 21.47 ± 0.45
ModernTCN 5.12 ± 0.59 11.41 ± 0.30 3.96 ± 0.23 10.79 ± 0.39

TimesNet 2.02 ± 0.09 8.18 ± 0.22 2.39 ± 0.06 8.35 ± 0.20
PatchTST 8.81 ± 0.96 22.97 ± 1.32 7.11 ± 0.65 19.96 ± 1.24

Pathformer – – 2.45 ± 0.02 8.65 ± 0.09
TimeMixer 4.31 ± 0.29 13.44 ± 0.28 6.31 ± 0.04 18.41 ± 0.06
MSGNet 2.48 ± 0.12 9.42 ± 0.32 2.57 ± 0.03 9.02 ± 0.06
MICN 2.15 ± 0.13 8.66 ± 0.26 2.39 ± 0.06 8.58 ± 0.11

Warpformer 1.45 ± 0.10 6.74 ± 0.08 2.32 ± 0.04 8.14 ± 0.07
Raindrop 2.21 ± 0.37 9.17 ± 0.49 2.36 ± 0.03 8.63 ± 0.11
GRU-D 2.03 ± 0.13 8.14 ± 0.26 2.39 ± 0.02 8.43 ± 0.13

tPatchGNN 1.44 ± 0.08 6.78 ± 0.14 2.35 ± 0.03 8.23 ± 0.08
GraFITi 1.61 ± 0.27 7.16 ± 0.36 2.22 ± 0.05 8.13 ± 0.13

CRU 2.00 ± 0.13 8.16 ± 0.26 2.34 ± 0.05 8.32 ± 0.13
mTAND 2.01 ± 0.09 8.13 ± 0.23 2.29 ± 0.03 8.38 ± 0.08

NeuralFlow 1.97 ± 0.12 8.39 ± 0.25 2.26 ± 0.08 8.29 ± 0.10
Latent-ODE 1.90 ± 0.03 7.92 ± 0.17 2.38 ± 0.05 8.35 ± 0.13

Hi-Patch 1.56 ± 0.10 6.71 ± 0.16 2.32 ± 0.02 8.11 ± 0.08
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Table 7. Performance of varying observation and forecast horizons on USHCN dataset. The best results are highlighted in bold, and the
second-best results are in underlined. The results in the table are presented in the form of (Mean ± Std).

Horizon 24months → 6months 24months → 12months

Metric MSE×10−1 MAE×10−1 MSE×10−1 MAE×10−1

iTransformer 6.05 ± 0.03 3.89 ± 0.14 6.19 ± 0.12 4.01 ± 0.12
ModernTCN 6.03 ± 0.10 3.68 ± 0.06 6.19 ± 0.07 3.75 ± 0.03

TimesNet 5.68 ± 0.05 3.66 ± 0.06 5.84 ± 0.06 3.78 ± 0.10
PatchTST 6.12 ± 0.03 4.01 ± 0.08 6.55 ± 0.12 4.20 ± 0.06

TimeMixer 5.89 ± 0.07 3.65 ± 0.05 6.06 ± 0.27 3.76 ± 0.04
MSGNet 5.76 ± 0.02 3.74 ± 0.08 5.93 ± 0.05 3.77 ± 0.03

MICN 6.02 ± 0.03 3.85 ± 0.04 6.00 ± 0.03 3.85 ± 0.03

Warpformer 5.12 ± 0.03 3.13 ± 0.08 5.10 ± 0.07 3.13 ± 0.12
Raindrop 7.01 ± 0.49 4.24 ± 0.33 7.61 ± 0.02 4.61 ± 0.05
GRU-D 5.29 ± 0.09 3.34 ± 0.09 5.36 ± 0.12 3.25 ± 0.07

tPatchGNN 5.23 ± 0.02 3.24 ± 0.19 6.23 ± 0.10 3.83 ± 0.60
GraFITi 5.12 ± 0.14 3.09 ± 0.10 5.01 ± 0.03 3.14 ± 0.06

CRU 6.77 ± 1.04 4.11 ± 0.61 6.64 ± 0.95 4.08 ± 0.51
mTAND 5.16 ± 0.10 3.10 ± 0.07 5.07 ± 0.03 3.09 ± 0.03

NeuralFlow 5.52 ± 0.05 3.46 ± 0.05 5.48 ± 0.37 3.56 ± 0.37
Latent-ODE 5.18 ± 0.04 3.36 ± 0.04 5.23 ± 0.04 3.35 ± 0.02

Hi-Patch 5.07 ± 0.17 3.06 ± 0.06 5.02 ± 0.05 3.07 ± 0.08

Table 8. Performance of varying observation and forecast horizons on PhysioNet dataset. The best results are highlighted in bold, and the
second-best results are in underlined. The results in the table are presented in the form of (Mean ± Std).

Horizon 36h → 12h 12h → 36h

Metric MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2

iTransformer 56.83 ± 21.17 17.05 ± 5.21 54.17 ± 17.91 17.03 ± 4.18
ModernTCN 24.87 ± 9.44 6.58 ± 0.58 31.48 ± 3.96 6.73 ± 0.53

TimesNet 9.43 ± 0.53 5.55 ± 0.20 9.26 ± 0.18 5.58 ± 0.10
PatchTST 26.13 ± 1.75 11.25 ± 0.29 25.63 ± 1.51 10.70 ± 0.38

Pathformer 6.85 ± 0.42 4.61 ± 0.18 8.19 ± 0.28 5.03 ± 0.07
TimeMixer 12.52 ± 0.45 6.47 ± 0.21 19.86 ± 0.17 8.38 ± 0.18
MSGNet 10.44 ± 0.44 5.94 ± 0.08 9.91 ± 0.12 5.74 ± 0.08

MICN 10.98 ± 0.31 6.01 ± 0.11 10.24 ± 0.14 5.85 ± 0.06

Warpformer 4.17 ± 0.13 3.38 ± 0.08 6.51 ± 0.12 4.24 ± 0.04
Raindrop 10.67 ± 0.33 5.87 ± 0.20 10.24 ± 0.18 5.83 ± 0.10
GRU-D 6.85 ± 0.37 4.88 ± 0.18 7.80 ± 0.22 5.13 ± 0.13

tPatchGNN 4.22 ± 0.09 3.38 ± 0.04 6.45 ± 0.11 4.24 ± 0.09
GraFITi 4.58 ± 0.11 3.65 ± 0.05 6.30 ± 0.14 4.38 ± 0.12

CRU 6.74 ± 0.21 4.82 ± 0.11 7.66 ± 0.14 4.97 ± 0.05
mTAND 5.61 ± 0.31 4.15 ± 0.09 7.46 ± 0.19 4.85 ± 0.05

NeuralFlow 8.87 ± 1.00 5.43 ± 0.18 7.98 ± 0.57 5.08 ± 0.24
Latent-ODE 6.99 ± 0.24 4.74 ± 0.11 7.28 ± 0.13 4.83 ± 0.07

Hi-Patch 4.16 ± 0.08 3.31 ± 0.06 6.30 ± 0.06 4.12 ± 0.05
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F.2. Leave-variables-out Classification

Table 9. Classification performance on samples with a fixed set of left-out variables. The best results are highlighted in bold and the
second best results are in underlined.

Dataset Methods
Discard ratio

10% 20% 30% 40% 50%

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

P12

GRU-D 68.6 ± 2.3 35.8 ± 2.2 68.2 ± 2.1 34.5 ± 2.9 66.8 ± 3.3 32.7 ± 4.6 65.8 ± 4.0 31.3 ± 5.2 65.1 ± 4.1 30.4 ± 5.5
mTAND 74.9 ± 0.6 37.7 ± 0.6 74.0 ± 1.3 36.5 ± 1.5 71.4 ± 3.8 34.1 ± 3.7 70.6 ± 3.6 33.2 ± 3.7 70.1 ± 3.5 32.5 ± 3.6
DGM2-O 76.3 ± 1.1 39.3 ± 1.5 76.1 ± 1.1 38.2 ± 1.7 74.8 ± 2.2 36.8 ± 2.6 72.0 ± 5.3 34.3 ± 5.0 70.4 ± 5.9 32.7 ± 5.7
MTGNN 71.2 ± 2.1 30.5 ± 1.5 70.3 ± 3.3 29.7 ± 2.8 68.9 ± 4.2 28.5 ± 3.3 68.1 ± 4.7 27.7 ± 3.6 67.6 ± 5.2 27.2 ± 3.8
Raindrop 73.2 ± 1.6 32.4 ± 0.9 73.0 ± 1.6 31.7 ± 1.1 72.2 ± 2.6 31.1 ± 2.7 71.5 ± 3.5 30.6 ± 3.5 70.8 ± 4.2 29.7 ± 4.3
StraTS 80.8 ± 0.4 42.4 ± 1.8 80.4 ± 0.7 41.8 ± 1.8 79.5 ± 1.6 40.2 ± 3.1 78.7 ± 1.9 38.4 ± 4.2 78.4 ± 2.0 37.5 ± 4.4
DuETT 73.9 ± 1.7 35.8 ± 2.3 74.7 ± 1.8 35.3 ± 2.0 73.6 ± 2.2 34.1 ± 2.4 72.8 ± 2.6 33.3 ± 2.7 72.3 ± 2.7 32.6 ± 2.8

Warpformer 75.9 ± 0.7 37.3 ± 2.2 75.6 ± 0.8 36.7 ± 2.3 73.8 ± 2.9 34.3 ± 4.1 72.8 ± 3.4 33.0 ± 4.6 72.1 ± 3.7 32.2 ± 4.7

Hi-Patch 80.1 ± 1.1 43.3 ± 2.2 79.7 ± 1.2 41.8 ± 2.7 79.1 ± 1.5 40.2 ± 3.4 78.8 ± 1.5 39.6 ± 3.2 78.7 ± 1.4 39.4 ± 3.0

P19

GRU-D 88.5 ± 2.3 54.6 ± 3.7 88.8 ± 2.1 54.2 ± 3.4 88.0 ± 2.5 50.4 ± 7.5 87.5 ± 2.8 49.6 ± 6.9 86.4 ± 3.5 47.2 ± 8.6
mTAND 79.6 ± 1.8 28.6 ± 1.9 79.2 ± 1.9 28.1 ± 2.1 78.0 ± 2.4 26.9 ± 2.9 77.2 ± 2.7 26.3 ± 2.9 76.2 ± 3.2 24.3 ± 4.8
DGM2-O 87.4 ± 0.6 53.4 ± 1.5 87.3 ± 0.8 53.2 ± 1.7 86.6 ± 1.6 49.9 ± 5.1 85.8 ± 1.9 47.7 ± 5.9 85.2 ± 2.2 45.7 ± 6.7
MTGNN 84.5 ± 1.4 48.9 ± 2.3 84.8 ± 1.7 49.8 ± 3.1 84.0 ± 1.9 47.2 ± 4.8 83.3 ± 2.2 45.5 ± 5.5 82.5 ± 2.9 42.7 ± 9.2
Raindrop 88.2 ± 1.5 59.7 ± 1.5 88.1 ± 1.3 59.8 ± 1.4 87.8 ± 1.2 59.1 ± 1.7 87.6 ± 1.1 58.5 ± 1.9 87.1 ± 1.5 57.7 ± 2.3
StraTS 90.6 ± 0.9 56.4 ± 3.0 91.0 ± 0.9 56.3 ± 2.3 91.0 ± 0.9 56.0 ± 2.4 90.8 ± 1.0 55.1 ± 3.0 90.4 ± 1.3 54.4 ± 3.3
DuETT 85.2 ± 1.0 53.7 ± 1.0 84.8 ± 1.1 53.9 ± 0.8 84.7 ± 1.0 53.3 ± 1.6 84.3 ± 1.4 52.7 ± 2.1 84.4 ± 1.3 52.5 ± 2.0

Warpformer 91.3 ± 0.8 55.2 ± 5.6 91.3 ± 0.8 55.1 ± 5.6 91.4 ± 0.8 56.0 ± 4.8 91.5 ± 0.7 56.4 ± 4.3 91.2 ± 0.8 56.2 ± 3.9

Hi-Patch 92.1 ± 0.4 60.7 ± 2.0 92.0 ± 0.4 60.6 ± 1.9 91.9 ± 0.5 60.3 ± 1.8 91.9 ± 0.5 60.0 ± 1.7 91.6 ± 0.8 59.5 ± 1.9

PhysioNet

GRU-D 70.0 ± 3.0 32.1 ± 4.1 69.5 ± 2.6 31.1 ± 3.6 69.2 ± 3.0 31.0 ± 4.4 68.3 ± 3.6 30.1 ± 5.3 68.1 ± 3.7 29.8 ± 5.3
mTAND 80.5 ± 2.1 42.8 ± 4.0 78.2 ± 3.4 40.5 ± 4.7 76.3 ± 4.0 37.7 ± 5.7 75.6 ± 3.9 36.6 ± 5.6 75.1 ± 3.9 36.1 ± 5.1
DGM2-O 80.2 ± 0.9 38.6 ± 2.8 80.4 ± 0.9 38.3 ± 2.8 79.3 ± 1.9 37.1 ± 3.4 77.5 ± 3.7 35.4 ± 4.4 75.6 ± 5.0 34.0 ± 4.8
MTGNN 68.9 ± 4.1 25.8 ± 4.8 69.3 ± 4.3 26.6 ± 4.5 69.0 ± 4.8 26.3 ± 5.2 68.3 ± 5.2 25.4 ± 4.8 67.2 ± 5.4 24.4 ± 4.8
Raindrop 76.5 ± 1.2 33.4 ± 2.2 76.5 ± 1.3 32.3 ± 2.3 75.6 ± 2.0 30.8 ± 3.2 74.7 ± 2.6 29.7 ± 3.5 73.6 ± 3.2 28.8 ± 3.9
StraTS 80.4 ± 2.4 40.8 ± 2.6 80.8 ± 2.3 40.5 ± 2.2 79.5 ± 2.8 39.5 ± 2.7 78.8 ± 3.0 38.2 ± 3.8 78.1 ± 3.4 37.6 ± 3.7
DuETT 78.2 ± 2.8 39.9 ± 3.5 78.3 ± 3.0 39.9 ± 3.7 76.7 ± 3.7 37.9 ± 4.5 75.9 ± 3.8 37.0 ± 4.6 74.9 ± 4.3 35.9 ± 5.0

Warpformer 78.2 ± 1.0 33.3 ± 2.1 77.7 ± 1.6 33.6 ± 1.8 75.8 ± 3.4 31.8 ± 3.0 73.8 ± 4.6 30.2 ± 4.1 72.7 ± 4.9 29.2 ± 4.2

Hi-Patch 81.2 ± 3.4 42.0 ± 7.6 80.6 ± 3.4 41.2 ± 7.2 79.8 ± 3.4 40.4 ± 6.3 79.3 ± 3.3 39.8 ± 5.8 78.7 ± 3.4 39.3 ± 5.5

MIMIC-III

GRU-D 81.0 ± 0.6 42.1 ± 0.8 80.3 ± 0.9 41.7 ± 1.0 79.2 ± 1.8 41.0 ± 1.4 78.5 ± 2.1 40.4 ± 1.6 77.9 ± 2.2 39.9 ± 1.8
mTAND 81.2 ± 0.2 42.1 ± 0.8 80.4 ± 1.1 41.9 ± 1.2 79.7 ± 1.4 41.0 ± 1.7 79.3 ± 1.4 40.4 ± 2.0 78.8 ± 1.6 39.8 ± 2.3
DGM2-O 78.8 ± 0.5 34.2 ± 0.9 78.3 ± 0.8 33.9 ± 1.1 77.6 ± 1.2 33.4 ± 1.2 77.3 ± 1.3 33.1 ± 1.2 76.8 ± 1.5 32.6 ± 1.4
MTGNN 78.8 ± 1.1 34.5 ± 1.4 78.0 ± 1.6 34.0 ± 1.3 77.1 ± 2.2 33.5 ± 1.5 76.3 ± 2.5 32.8 ± 1.9 75.6 ± 3.2 32.2 ± 2.4
Raindrop 78.2 ± 1.1 33.7 ± 0.9 77.5 ± 1.3 33.5 ± 0.9 76.4 ± 2.1 32.8 ± 1.4 76.0 ± 2.0 32.5 ± 1.4 75.7 ± 2.0 32.3 ± 1.4
StraTS 82.4 ± 0.7 43.3 ± 2.8 82.1 ± 0.6 43.7 ± 2.1 81.7 ± 0.8 43.1 ± 2.0 81.5 ± 0.8 42.6 ± 2.0 81.0 ± 1.3 41.9 ± 2.4
DuETT 78.0 ± 0.5 34.0 ± 0.9 77.2 ± 1.0 33.7 ± 0.8 76.6 ± 1.2 33.3 ± 1.0 76.4 ± 1.2 33.0 ± 1.0 76.1 ± 1.3 32.6 ± 1.3

Warpformer 82.5 ± 0.5 43.1 ± 0.8 81.7 ± 0.9 42.5 ± 1.2 81.2 ± 1.1 42.1 ± 1.2 80.6 ± 1.5 41.8 ± 1.3 80.0 ± 1.9 41.3 ± 1.6

Hi-Patch 82.8 ± 0.3 44.3 ± 1.2 82.3 ± 0.6 44.1 ± 1.3 81.7 ± 1.0 43.6 ± 1.4 81.1 ± 1.5 42.8 ± 2.2 80.5 ± 1.9 42.0 ± 2.6
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F.3. Regular Multivariate Time Series Forecasting

We test Hi-Patch on traditional datasets with regular sampling frequency to enhance the model’s generality. Specifically, we
add forecasting experiments on four regular MTS datasets: ETTm1, ETTm2, Exchange and Weather. The lengths of the
historical and prediction windows are both set to 96. The experimental pipeline is based on that provided by iTransformer
(Liu et al., 2024), and we compared our model with five SOTA regular time series forecasting methods in recent years:
PatchTST (Nie et al., 2023), Crossformer (Zhang & Yan, 2023), FEDformer (Zhou et al., 2022) and Autoformer (Wu et al.,
2021a).

Table 10 shows the results. From the experimental results, our Hi-Patch achieved an average ranking of 2.25 in terms of
MSE and MAE metrics across the four datasets, notably outperforming the latest iTransformer on the Exchange and Weather
datasets. Although our method is initially designed for IMTS, its ability to extract multi-scale temporal dependencies and
inter-variable dependencies is general for time series modeling. Consequently, it can also achieve competitive performance
in regular time series forecasting tasks, further demonstrating the generality of our method.

Table 10. Forecasting performance of Hi-Patch on four regular time series datasets.

Methods ETTm1 ETTm2 Exchange Weather

MSE MAE MSE MAE MSE MAE MSE MAE

iTransformer 0.334 0.368 0.180 0.264 0.086 0.206 0.174 0.214
PatchTST 0.329 0.367 0.175 0.259 0.088 0.205 0.177 0.218

Crossformer 0.404 0.426 0.287 0.366 0.256 0.367 0.158 0.230
FEDformer 0.379 0.419 0.203 0.287 0.148 0.278 0.217 0.296
Autoformer 0.505 0.475 0.203 0.287 0.197 0.323 0.266 0.336

Hi-Patch 0.380(4th) 0.405(3rd) 0.184(3rd) 0.269(3rd) 0.085(1st) 0.206(2nd) 0.158(1st) 0.208(1st)

Figure 6. Forecasting performance with varing observation horizons and fixed forecast horizon.

F.4. Varying Observation Horizons and Fixed Forecast Horizon

We conduct additional experiments to evaluate the model’s ability to capture more temporal dependencies from long-term
data on 3 datasets. Specifically:

Human Activity Fixed forecast length at 1000ms, varied observation horizons as {1000, 2000, 3000}ms.

USHCN Fixed forecast length at 1 month, varied observation horizons as {6, 12, 24}months.

PhysioNet Fixed forecast length at 24hours, varied observation horizons as {6, 12, 24}hours.

Figure 6 shows the results of our model and the three most competitive baseline methods: Warpformer, GraFITi and
tPatchGNN. It is evident that our method consistently improves in MSE as the historical length increases. This demonstrates
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the model’s capability to learn more temporal dependencies from longer-term data. Conversely, some existing IMTS
methods do not have this ability, such as Warpformer on the USHCN and Human Activity datasets, and GraFITi on the
Human Activity dataset, both showing an increase in MSE with increasing observation horizons. These supplementary
experiments further highlight the superiority of our Hi-Patch approach compared to prior methods.

G. Computational Complexity Analysis
G.1. Theoretical Analysis

For a dataset with V variables, maximum series length Lmax, and missing rate M , suppose the data is divided into N patches
using a fixed time span. Hi-Patch consists of one Intra-Patch Graph Layer and log2 N Inter-Patch Graph Layers. We analyze
the computational complexity of these two components separately.

Intra-Patch Graph Layer Complexity For each patch, assuming missing points are uniformly distributed, the number of
nodes per patch is V Lmax(1−M)/N . The complexity of attention operations within a patch is O((V Lmax(1−M)/N)2).
For N patches computed in parallel, the total complexity is O(V 2L2

max(1−M)2/N). Additionally, aggregating nodes of
the same variable to the reference time point has a complexity of O(V LmaxN(1−M)). Thus, the overall complexity of the
Intra-Patch Graph Layer is O(V 2L2

max(1−M)2/N + V LmaxN(1−M)) = O(V 2L2
max(1−M)2/N).

Inter-Patch Graph Layers Complexity In the first Inter-Patch Graph Layer, the maximum number of nodes is NV .
Each node computes graph attention with all 2V variable nodes in adjacent patches, resulting in a complexity of O(2NV 2).
Aggregation, where each node interacts with only one adjacent node of the same variable, has a complexity of O(NV ).
Thus, the first Inter-Patch Graph Layer has a total complexity of O(2NV 2 +NV ) = O(NV 2). For the second layer, the
number of nodes is halved compared to the first layer, leading to a complexity of O(NV 2/2). Summing over log2 N layers,
the total complexity of Inter-Patch Graph Layers is O

(∑log2 N
k=1

NV 2

2k−1

)
= O(V 2(2N − 2)).

From the above, the primary complexity of our model lies in the first Intra-Patch Graph Layer. Since each observation is
treated as a node for attention operations to capture asynchronous dependencies in IMTS, this layer has quadratic complexity
with respect to both the number of variables and the sequence length. Fortunately, IMTS datasets are often highly sparse
(missing rate M > 80% as shown in Table 4), and the coefficient (1 −M)2 reduces the practical complexity by 1–2
orders of magnitude. Additionally, increasing the number of patches N further reduces computational overhead in practice.
Therefore, the practical computation time of our method is acceptable, as shown in Appendix G.2. In summary, our method
achieves a more comprehensive extraction of multi-scale asynchronous correlations in IMTS at the cost of an acceptable
increase in computational complexity.

G.2. Empirical Analysis

We compared 8 leading IMTS models: Warpformer, GRU-D, GraFITi, tPatchGNN, CRU, mTAND, NeuralFlow, and
Latent-ODE. All models are evaluated using the same batch size (32 for Human Activity, 128 for USHCN, 64 for PhysioNet,
and 8 for MIMIC-III) to assess their training time per epoch and MSE. The results shown in Figure 7 indicate that the
training time of our method ranks 5-th on average across the four datasets. It is worth noting that our model leverages a
hierarchical graph structure to extract asynchronous correlations and multi-scale features in IMTS that other methods fail to
capture, which inevitably leads to an increase in computational overhead. Nonetheless, our model’s training time remains in
the same order of magnitude as the fastest models. In this context, We believe that the trade-off of sacrificing some training
time to extract richer features in IMTS is worthwhile.

G.3. Future Scalability on Dense Data

Should the need arise to extend our approach to large-scale dense datasets, existing scalability techniques can be integrated
to reduce the overhead of the intra-patch graph. For instance, edge pruning—such as connecting each node only to its nearest
k observation points—can reduce the complexity to O(kN), or alternatively, leveraging improved attention mechanisms
like the ProbSparse Self-Attention from Informer (Zhou et al., 2021) can lower the complexity to O(N logN). In these
cases, the trade-off between a slight reduction in feature extraction and enhanced scalability would be worthwhile.
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(a) Human Activity (b) USHCN

(c) PhysioNet (d) MIMIC-III

Figure 7. Comparison of IMTS models in terms of efficiency: training time per epoch against error metric.

H. Comprehensive Discussion on the Technical Details of Hi-Patch and Existing Methods
Differences from patch-based methods for regular multivariate time series Representative methods include PatchTST
(Nie et al., 2023) and Pathformer (Chen et al., 2024a). These approaches encode observations within fixed-length time
steps of univariate time series into patches and use attention mechanisms to extract temporal correlations between patches.
However, these methods apply a uniform time step to all variables, which makes them unsuitable for IMTS. In IMTS,
some variables may only have a few observations, resulting in patches with long time spans, while other variables with
frequent observations will result in patches covering very short time spans. These methods cannot account for differences
in time spans across patches, and the patches for different variables are often misaligned temporally, complicating the
extraction of inter-variable correlations. In contrast, Hi-Patch segments patches using fixed time spans and each patch
contains observations for all variables. This design guarantees consistent time spans across patches and facilitates the
modeling of inter-variable relationships.

Differences from GNN-based methods for regular multivariate time series A latest typical example is MSGNet (Cai
et al., 2024), which extracts correlations between variables at the same timestamp using variable graphs. However, such
methods struggle to capture asynchronous correlations that are prevalent in IMTS. Our method uses both intra-patch and
inter-patch graphs to simultaneously extract: 1) Correlations of the same variable across different time points (SVDT), 2)
Correlations of different variables at the same time point (DVST) and 3) Correlations of different variables across different
time points (DVDT).

Differences from patch-based methods for irregular multivariate time series Pioneering work is tPatchGNN (Zhang
et al., 2024), which also segments patches based on fixed time spans and models inter-variable correlations via GNNs.
However, tPatchGNN considers only one variable per patch and fails to capture fine-grained inter-variable correlations
within a patch. Moreover, it extracts features separately in temporal and variable dimensions, limiting its ability to model
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asynchronous correlations. In contrast, Hi-Patch extracts fine-grained dependencies within patches and coarse-grained
dependencies across patches while modeling both synchronous and asynchronous inter-variable correlations. Additionally,
Hi-Patch can extract multi-scale information from IMTS, which is absent in tPatchGNN.

Differences from GNN-based methods for irregular multivariate time series Representative methods include Raindrop
(Zhang et al., 2022) and GraFITi (Yalavarthi et al., 2024). Raindrop models variable interactions at each timestamp using
GNNs but cannot capture asynchronous correlations. GraFITi represents IMTS using a variable-time bipartite graph but,
as acknowledged in their paper, has limited ability to extract asynchronous correlations. Moreover, these methods lack
the capability to extract multi-scale information from IMTS. Hi-Patch stands out by capturing both synchronous and
asynchronous dependencies at multiple scales, which provides a significant advantage over these methods.

Differences from multi-scale methods for irregular multivariate time series Among methods specifically designed for
IMTS, Warpformer (Zhang et al., 2023) is the only method that considers the multi-scale characteristics of IMTS and it
achieves the most competitive performance. However, Warpformer involves interpolation of sparse variables, which may
distort the original distribution of IMTS. In addition, Warpformer employs attention separately in the time and variable
dimensions, limiting its ability to capture asynchronous dependencies. In contrast, our Hi-Patch flexibly represents and
extracts both synchronous and asynchronous dependencies of IMTS under different scales through an intra-patch graph layer
and several inter-patch graph layers. Moreover, Hi-Patch only handles actually observed points, avoiding the accumulation
of imputation errors, particularly in cases of higher missing ratios, exhibiting a degree of robustness.

I. More Results for Ablation Study

Table 11. Ablation results of Hi-Patch on four datasets. The results in the table are presented in the form of (Mean ± Std).

Methods PhysioNet MIMIC-III

MSE×10−3 MAE×10−2 MSE×10−2 MAE×10−2

Hi-Patch 4.86 ± 0.03 3.62 ± 0.07 1.75 ± 0.26 7.24 ± 0.18

w/o Hie 4.96 ± 0.07 3.68 ± 0.08 1.77 ± 0.30 7.30 ± 0.13
w/o DVDT 4.88 ± 0.05 3.67 ± 0.04 1.80 ± 0.04 7.41 ± 0.18

w/o 3W 4.98 ± 0.07 3.74 ± 0.04 1.79 ± 0.04 7.38 ± 0.09
w/o TEAGG 6.34 ± 0.60 4.44 ± 0.36 1.92 ± 0.07 7.63 ± 0.26

J. More Results for Effect of Scale Quantity

(a) Human Activity (b) MIMIC-III

Figure 8. Effect of different scale quantities on Human Activity and MIMIC-III datasets.
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(a) Human Activity (b) MIMIC-III

Figure 9. Distribution of sample length and time span on two datasets. Each blue dot represents a sample, with its x-coordinate indicating
the sample length, and the left y-axis representing its time span. The red curve is the distribution curve of sample length.

K. Visualization of Multi-scale Views

(a) Scale 1 (Origin) (b) Scale 2 (c) Scale 3

Figure 10. Visualization of views on three scales on Human Activity dataset.

(a) Scale 1 (Origin) (b) Scale 2

Figure 11. Visualization of views on two scales on MIMIC-III dataset.
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(a) Scale 1 (Origin) (b) Scale 2 (c) Scale 3

(d) Scale 4 (e) Scale 5

Figure 12. Visualization of views on five scales on USHCN dataset.

(a) Scale 1 (Origin) (b) Scale 2 (c) Scale 3

Figure 13. Visualization of views on three scales on PhysioNet dataset.
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